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Abstract

In this paper we will show the properties of composition operators u! f (u)
in framework of E-valued Sobolev and Lizorkin-Triebel spaces. Here, E is a Ba-
nach space. Boundedness and continuity properties will be discussed in a certain
detail in Sobolev-Lions type function space concerning two abstract spaces E0
and E in terms of their interpolation. By using these composition properties,
we obtain the local and global existence, uniqueness, and Lp-regularity of some
nonlinear abstract di¤usion equations.

1. Introduction and backgrounds

The boundedness and continuity properties of product and composition func-
tions in di¤erent functional spaces were studied e.g. in [1-4, 8-9] and the ref-
erences therein. Here, we show the composition and products properties in
abstract Sobolev, Lizorkin-Triebel, and Sobolev-Lions spaces. The main moti-
vation in proving our results comes from the study for analysing composition
and products in fractional Sobolev spaces comes from the study of nonlinear
evolution equations, see e.g.[7], [10] and the references therein.
In order to state our results precisely, we introduce some notations and

some function spaces. Let E be a Banach space. Lp (
;E) denotes the space
of strongly measurable E-valued functions that are de�ned on the measurable
subset 
 � Rn with the norm

kukp = kukLp(
;E) =

0@Z



ku (x)kpE dx

1A 1
p

, 1 � p <1;

kukL1(
;E) = ess sup
x2


ku (x)kE :

Here, R, Z, C denote the set of real, entire and complex numbers, respec-
tively. Let f = f (u) = f (u) (x) be a composite function for E-valued function
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u. Assume the function u : Rn!E is such that f (u) (x) 2 E for x 2 Rn. We
consider the action of f (u) (x) on the abstract Sobolev spaces. Let 0 � s <1
and

m =

�
s, if is an integer [s] ,
[s] + 1, otherwise.

The E-valued function f (u) said to be s-admissible if f (0) = 0 and is
Fr´echet di¤erentiable in E with

M = max
j�j=k

sup
x2Rn



D�
xf (u) (x)




E
<1, � = (�1; �2; :::; �n) ,

D�
x =

@�

@x
�1
1 @x

�2
2 :::@x

�n
n

;

where the maximum is taken over k 2 f1; 2; :::mg.
S(Rn;E) denotes an E-valued Schwartz class, i.e. the space of all E-valued

rapidly decreasing smooth functions on Rn equipped with its usual topology gen-
erated by seminorms. S(Rn;C) is denoted by S (Rn). Here, S0(Rn) = S0(Rn;E)
denote the space of all continuous linear operators from S (Rn) into E equipped
with the bounded convergence topology. Recall S(Rn;E) is norm dense in
Lp(Rn;E), when 1 � p <1.
Here, F denotes the Fourier transform. Let Ls;p (Rn;E) denotes E-valued

Bessel space of order s 2 R, that is de�ned as:

Ls;p (E) = Ls;p (Rn;E) = fu 2 S0(Rn;E);

kukLs;p(E) =




F�1 �I + j�j2� s

2

û






Lp(Rn;E)

<1
)
:

It clear that L0;p (Rn;E) = Lp (Rn;E).
Let _Ls;p (Rn;E), s > 0, p 2 (1;1) be the E-valued Riesz potential space, i.e.

the homogeneous counterpart to the inhomogeneous space Ls;p (Rn;E). Note
that for s = m 2 Z+ the space _Ls;p (Rn;E) is de�ned by

kuk _Ls;p(Rn;E) �
X
j�j=s

kD�ukLp(Rn;E) ;

wile

kukLs;p(Rn;E) �
X
j�j�s

kD�ukLp(Rn;E) � kukLp(Rn;E) + kuk _Ls;p(Rn;E) :

Let E0 and E be two Banach spaces and E0 is continuously and densely
embedded into E. Let Y s;p (E0; E) = Ls;p (Rn;E0; E) denote the Bessel-Lions
type spaces i.e.,

Ls;p (Rn;E0; E) = fu 2 Ls;p (Rn;E) \ Lp (Rn;E0) ;
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kukLs;p(Rn;E0;E) = kukLp(Rn;E0) + kukLs;p(Rn;E) <1
o
.

Wm;p (
;E) denotes an E-valued Sobolev space with norm,

kukWm;p(
;E) = kukLp(
;E) +
nX
k=1





@mu@xmk






Lp(
;E)

<1:

In a similar way, we de�ne the following Sobolev-Lions type spaces,

Wm;p (
;E0; E) =Wm;p (
;E) \ Lp (
;E0) :

Let s = m+ �, m integer, 0 < � < 1. Consider E-valued Sobolev-Slobodetskii
space W s;p (Rn;E) de�ned by

kukpW s;p(Rn;E) � kuk
p
Xp
+ kDmukpXp

+

Z
Rn

Z
Rn

kDmu (x)�Dmu (y)kp

jx� yjn+�p
dxdy <1:

We start by recalling the Littlewood-Paley decomposition of temperate dis-
tributions in vector valued function spaces. In order to de�ne abstract Lizorkin-
Triebel spaces we consider the dyadic-like subsets fIkg1k=0 of Rn and partition
of unity f'kg

1
k=0 de�ned e.g. in [12, § 1]. For u 2 S0, we set uk = u �'k, where

u � 'k denotes the convolution of the functions u and 'k.We have u =
X
k

uk

in S0 (E). Here, lq (E)-denotes the E-valued sequance space u = fukg1k=0 with
norm given by

kuklq(E) =
" 1X
k=0

kuk (x)kqE

# 1
q

, 1 � q <1, kukl1(E) = sup
k
kuk (x)kE :

Let �1 < s < 1 and 0 < p, q � 1. The E-valued Lizorkin-Triebel space
F sp;q (E) = F sp;q (Rn;E) is the set of all f 2 S0 (Rn;E) for which

kfkF s
p;q(Rn;E)

=



�2ks (�'k � u)	1k=0


Lp(Rn;lq(E)) =8><>:






�2ksuk (x)	

lq(E)


Lp(Rn) <1, if 1 � p <1;

sup
x2Rn

h

�2ksuk (x)	

lq(E)i <1, if p =1:
F sp;q (Rn;E)-together with the norm in (1:3) is a Banach space (see e.g. [12, § 10].
It can be shown (see [12, § 11) that di¤erent choices of f'kg lead to equivalent
norms on F sp;q (Rn;E) for E = C.

Moreover, by using the Fourier multipler theorems in Lp (Rn;E), we get
that the spaces W s;p (Rn;E) also coincide with the E-valued Besov spaces
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Bsp;p (Rn;E). But for p 6= 2, the spaces W s;p (Rn;E) do not coincide with
the Bessel spaces Ls;p (Rn;E).

Let

Xp = Lp (Rn;E) , Xs;p = Xs;p (E) = Ls;p (Rn;E) , �Xs;p = _Ls;p (Rn;E) .

Xs;p (E0; E) =W s;p (Rn;E0; E) , Yp = Yp (E) = Lp (RnT ;E) ,
Y s;p =W s;p (Rn;E) , Y m;s;p = Y m;s;p (E0; E) =Wm;s;p (RnT ;E0; E) :
Let X and Y be two Banach spaces. (X;Y )�;p for � 2 (0; 1), p 2 [1;1]

denotes the real interpolation spaces de�ned by K-method [12, §1.3.2]. L (X;Y )
will denote the space of all bounded linear operators from X to Y . For Y = X
it will be denoted by L (X).
Here,

S� = f� 2 C, jarg �j � �, 0 � � < �g :
A closed linear operator A is said to be �-dissipative (or dissipative) in

a Banach space X with bound M > 0 if D (A) and R (A) are dense on E,
N (A) = f0g and 


(A� �I)�1




L(X)
�M j�j�1

for any � 2 S�, 0 � � < �, where I is the identity operator in X, D (A) and
R (A) denote domain and range of the operator A.

De�nition 1.3. A Banach space E has Fourier type r 2 [1; 2] provided
the Fourier transform F de�nes a bounded linear operator from Lr(Rn;E) to
Lr

0
(Rn;E) for 1

r +
1
r0
= 1 (see e.g [5, Remark 2.3]).

From [5] we obtain:
Proposition 1.1. A Banach space E has Fourier type r 2 [1; 2]. Assume an

operator-function 	 belongs to B
n
r
r;1 (Rn;L (E)). Then 	 is a Fourier multiplier

in Lp (Rn;E) for p 2 [1;1] :
Consider the following Cauchy problem

u
0
(t) = Au (t) + f (t) , u (0) = 0, t 2 0 2 (0; T ) ; (1.1)

where A is a linear operator in a Banach space E:
Let X = Lp(R;E). By reasoninig as in [11, Theorem 4.3] we prove the

following result.
Theorem A0. Assume that a Banach space E has Fourier type r 2 ( 1; 2 ]

and 1 � p � 1. Let A be a  -sectorial operator in E with  > �
2 . Then for

all f 2 X there exists a unique solution of the problem (1:1) and the following
maximal regularity estimate holds


u0




X
+ kAukX � C kfkX : (1.2)

Assumption A0. Assume that f (j) (u) is a continuous function in u 2
W s;p (Rn;E). Let � be a subset ofW s;p (Rn;E)\L1 (Rn;E) such that f (j) (u) (x) 2
E for u 2 � and x 2 Rn for j = 1; 2; :::;m. Here, m is a positive integer.
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First, we show the following:
Theorem 1.1. Let the Assumption A0 hold. Assume that s > 1, p 2 (1;1),

and f is s-admissible. If u 2 � \ _X1;sp, then f (u) 2 Xs;p \ _X1;sp and

kf (u)kXs;p �M (kukXs;p + kuks_X1;sp) ; (1.3)

kf (u)k�X1;sp �M kuk _X1;sp : (1.4)

Remark 1.1. For 0 < s � 1 and 1 < p <1, f (u) 2 Xs;p for all u 2 Xs;p

and any s-admissible f . In fact, we see below (in Section 2) that in this case,
we have

kf (u)kXs;p 2M kukXs;p :

So, in particular, it is easy to see that (1:3) holds.
We also have f (u) 2 Xs;p for all u 2 Xs;p, when s � n

p as a consequence
of Theorem 1 since the imbedding theorem in E-valed Sobolev spaces (see e.g.
[6, 10]) implies that Xs;p is continuously imbedded into _X1;sp whenever sp � n,
s > 1 and 1 < p <1.
However, for a s 2 Z+, Dahlberg [9] even in a scalar case (i.e. E = C) has

shown that if 1 < s < n=p, 1 < p < 1, f (u) 2 Xs;p for all u 2 Xs;p and any
for s-admissible f , then f (u) = cu for some c 2 R:
In view of Dahlberg�s negative result, a natural question is to determine

what additional conditions on u 2 Xs;p and on the space E guarantee that
f (u) 2 Xs;p for s-admissible f . The �rst result of this type (for case of E = C )
is obtained from the Gagliardo-Nirenberg lemma which implies that f (u) 2 Xs;p

for every u 2 Xs;p \X1.
In this regard, we prove the following result:
Theorem 1.2. Let s = m 2 Z+ and m � 1. Assume that the Assumption

A0 is satis�ed. Suppose f (u) 2 Xm;p for all u 2 � � Xm;p and any m-
admissible f . Then u 2 Xm;p \ _X1;mp:
Remark 1.2. For 0 � s � 1 and p 2 (1;1), f (u) 2 Xs;p for all u 2 Xs;p

and any s-admissble f:
Here, X;j;p denotes a real interpolation spaces between Xs;p and Xp, i.e.

X;j;p = (X
s;p; Xp)�j ;p , �j =

jp+ 1

mp
, j = 0; 1; :::;m� 1:

Remark 1.3. By de�nition of the space Y m;s;p (E0; E), we have

Y m;s;p (E0; E) =Wm;p (0; T ;Xs;p (E0; E) ; Xp (E)) :

Then, in virtue of J. Lions-J. Peetre trace result (see e.g [12, § 1.8]) the map
u ! u(j) (t0), t0 2 [0; T ] is continuous and surjective from Y m;s;p (E0; E) onto
X;j;p and there is a constant C1 such that


u(j) (t0)




X;j;p

� C1 kukYm;s;p(E0;E)
, 1 � p � 1. (1.5)

Assume s = m+ �, m integer and 0 < � < 1. Let Y s;p = Y s;p (E) denotes the
Sobolev-Slobodetskii space W s;p (Rn;E).
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We prove here, the following composition properties in E-valued Sobolev-
Slobodetskii space Y s;p:
Theorem 1.3. Let the Assumption A0 hold. Assume that s > 1, p 2 (1;1),

and f is s-admissible. Then the map u! f (u) is well-de�ned and continuous
from Y s;p \ Y 1;sp into Y s;p.
Finally, we prove the following coposition and product properties in Sobolev

-Lions spaces Y m;s;p (E0; E):
Theorem 1.4. Assume that the following conditions are satis�ed:
(1) E, E0 be two Banach spaces, E0 continuously and densely belongs into

E;
(2) f = f (t; x; u) is s-admissible with s � 0, x 2 Rn for a.a. t 2 [0; T ];
(3) the function u! f (t; x; u): RnT �X0 ! E is a measurable in (t; x) 2 RnT

for u 2 X0;
(4) f (t; x; u) is continuous in u 2 X0 and f (t; x; :) 2 C [s]+1 (X0;E) uni-

formly with respect to (t; x) 2 RnT .
Then for any u 2 Y m;s;p (E0; E), we have f(u (t0; :)) (:) 2 Xs;p. Moreover,

for all u 2 Y m;s;p (E0; E) the following estimate holds

kf(u (t0; :))kXs;p . ku)kXs;p : (1.6)

Remark 1.6. The conditions of Theorem 1.4 does not includes the Assump-
tion A0. This is due to fact that here, we used the trace result (1:5) instead of
it.
As an application of Theorems 1.1-1.4 consider now the Cauchy problem for

nonlocal abstract di¤usion equation,

@tu� a�u�A � u = f (u) , (t; x) 2 (0; T )� Rn; (1.7)

u (0; x) = ' (x) for a.e. x 2 Rn;
where A = A (x) and f (u) is a nonlinear operator functions in a Banach space
E, respectively, u = u (t; x) is a E-valued unknown function, a is a complex
number, T 2 (0; 1], f(u) is a given nonlinear function and ' (x) is a given
E-valued functions.
Here, we derive the existence, uniqueness, and Lp-regularity properties to

solution of the problem (1:7).
We use here, the equivalent Littlewood-Paley characterization of _Ls;p (Rn;E)

for its de�nition (see [1] for E = C). Let � be a �nite function de�ned in [1].
For � 2 Z, set �� (x) = 2�n� (2�x). For p 2 (1;1) and s � 0, let

kuk _Ls;p(Rn;E) =





X
�2Z

k2�s�� � ukE







Lp

:

Note that _Ls;p (Rn;E) = Ls;p (Rn;E) for s = 0, p 2 (1;1) by Littlewood-Paley
theory (see e.g. [28] for E = C).
For u, � > 0 the relations u . �, u � � means that there exist positive

constants C; C1; C2 independent on u and � such that, respectively

u � C�, C1� � u � C2�:
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2. Preliminaries

Let E be a Banach space and f (x) is a E-valued function. Sometimes we
will denote kf (x)kE just by kf (x)k. For proving the main results in a similar
way as in [1, Theorem A], we get the following lemmas:
Lemma 2.1. Assume that 0 � �1 < �2 < 1, p1, p2 2 (1;1), � 2 (0; 1),

� = (1� �)�1 + ��2, and 1
p =

1��
p1
+ �

p2
. Then

kuk�X�;p � kuk1���X�1;p1
kuk��X�;p : (2.1)

Lemma 2.2. Suppose that � 2 (0; 1), p 2 (1;1) and � > 0. Then

kuk�X��;pn� � kuk1��BMO(E) kuk
�
�X�;p : (2.2)

Lemma 2.3. Suppose that � 2 (0; 1), p 2 (1;1) and � > 0. If u 2 Xq for
some q 2 (1;1), then

kuk�X�;p � kS�ukXp
(2.3)

and if 1 � t < p,
kD�

t ukXp
� C (�; p; t) kuk�X�;p : (2.4)

Lemma 2.4. Suppose that � 2 (0; 1), p 2 (1;1), k 2 Z, k � 2. Let pi � 1,

i � 1, i = 1; 2; :::; k, and 1

pj
+
X
i 6=j

1

i
= 1, for j = 1; 2; :::; k. Then







kY
i=1

ui







�X�;p

� C
kX
j=1

kujk�Xppj

kY
i=1;i 6=j

kuikX
ip :

Let f (u) = f (u) (x). For proving of the main theorems we need the following

Theorem 2.1. Let the Assumption A0 hold, s � 0, f 2 C [s]+1 (Rn;E)
with f(0) = 0. Then for any u 2 �, we have

f(u) (:) 2 Xs;p \X1:

Moreover, there is some constant A(M) depending onM such that for all u 2 �
with kukX1

�M;
kf(u)kXs;p � C (M) ku)kXs;p : (2.5)

Proof. By Assumption A0, f (u) 2 E for u 2 �. For s = 0 in view of f(0) = 0,
we get

f (u) =

1Z
0

f (1) (�u) d(�u):

It follows that
kf (u)kXp

� C (M) kukXp
:
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If s is a positive integer, we have

kf(u)kXs;p � C

"
kf(u)kXp

+
nX
k=1





 @s@xk f(u)





Xp

#
: (2.6)

By calculation of derivative and applying Holder inequality, Gagliardo-Nirenberg�s
inequality in E-valued Xp spaces, we have



@�ku@xi






Xpk

� C kuk1�
�k
l

X1





@su@xsi






�k
l

Xp

: (2.7)

Hence, from (2:6) and (2:7) we get



 @s@xi f(u)





Xp

� C (M)





@su@xsi






Xp

: (2.8)

Then combining (2:7) and (2:8) we obtain (2:5).
Let s is not integer number and m = [s]. From the above proof, we have

kf(u)kXm;p � C (M) ku)kXm;p , kf(u)kXm+1;p � C (M) ku)kXm+1;p :

Then from the �rst part of the proof, we get the estimate (2:5)

3. Proofs of main theorems

Proof of Theorem 1.1. Since f (0) = 0, we have

kf (u) (x)k = kf (u) (x)� f (0)k � kfkX1
ku (x)k .

Hence,
kf (u)kXp

� kfkX1
kukXp

. (3.1)

Then @
@xi

f (u) (x) = f (1) (u) @u@xi for i = 1; 2; :::; n. Hence, by (2:5)

kf (u)k _X1;p � C



f (1)




X1
kuk _X1;p , p 2 (1;1) : (3.2)

If � 2 (0; 1), applying the mean value theorem to f (u (x+ ry)) � f (u (x)) we
have

S�f (u) �



f (1)




X1
S�u:

Hence, by (2:3),

kf (u)k _X�;p � C



f (1)




X1
kuk _X�;p , p 2 (1;1) : (3.3)

Now, by reasoning as in [1, Theorem A], we obtain the assertion.
Proof of Theorem 1.2. First notice that u 2 Xm;p, since f (t) = t is

m�admissible for any m. Let � 2 C1 (Rn) satisfy supp� 2 [�1; 1] and � (t) = 1
for t 2

�
� 2
3 ;

2
3

�
. Then by reasononing as in [1, Theorem B], we get the assertion.
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Proof of Theorem1.3. For proving given theorem, we need the following
lemmas:
By reasoning as in [16], we have
Lemma 3.0 (Abstract Gagliardo-Nirenberg�s inequality). Let E be a Fourier

type space. Assume that u 2 Lp (Rn;E), Dmu 2 Lq (Rn;E), p; q 2 (1;1).
Then for i with 0 � i � m; m > n

q we have

Diu



r
� C kuk1��p

nX
k=1

kDm
k uk

�
q ; (3.9)

where
1

r
=

i

m
+ �

�
1

q
� m

n

�
+ (1� �) 1

p
,
i

m
� � � 1:

Note that, for E = C the lemma considered by L. Nirenberg [7].
By reasoning as in [13], we get the following
Lemma 3.2. Let the Assumption A0 hold and �1 < s <1, 0 < p, q <1.

For every j � 0, let fj 2 S0(Rn;E) be such that supp fj � B2j+2 . Then

kfjkF s
p;q(E)

.







�2sjfj	1k=0


lq(E)






Lp(Rn)

. (3.10)

Lemma 3.3. Let E be a Fourier type space. For any f 2 Lp (Rn;E),
p 2 (1;1),
(1)

kMfkLp(Rn;E) . kfkLp(Rn;E) ;
(2) for any sequence of functionffjg,


kfMfj (x)gklq(E)





Lp(Rn)

.



kffj (x)gklq(E)


Lp(Rn) ;

(3) for any �xed ' 2 S (Rn) and any function f ,

kf � 'kE .Mf (x) , for t > 0, x 2 Rn.

Lemma 3.4. For 0 < s1 < s2 < 1; 1 < p < 1, 0 < q � 1, so that
s = �s1 + (1� �) s2, 1p =

�
p1
+ 1��

p2
, we have

kfkF �s
p
�
;q

. kfk�
Xs;p

kfk1��
X1

: (3.11)

By reasoning of as in the Runst-Sickel lemma [9, p.345], we obtain the same
estimates for E-valued Lizorkin-Triebel spaces given by:

Lemma 3.5. Let the Assumption A0 hold and �1 < s1 < s2 <1, 0 < r1,
r2 � 1, 0 < p1, p2 � 1, 0 < q � 1 such that

0 <
1

p
=
1

p1
+
1

r1
=
1

p2
+
1

r2
< 1.
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Then for f 2 F sp1;q (E) \Xr1 and g 2 F sp2;q (E) \Xr2 the following estimate
holds

kfgkF s
p;q(E)

.



Mf



�2sjgj (x)	

lq(E)


Lp(Rn)+


Mg


�2sjfj (x)	

lq(E)


Lp(Rn) (3.12)

and
kfgkF s

p;q(E)
. kfkF s

p1;q
(E) kgkXr2

+ kgkF s
p2;q

(E) kfkXr1
: (3.13)

Lemma 3.6. Let �1 < s1 < s2 < 1, 0 < q1, q2 � 1, 0 < p1, p2 � 1,
0 < q � 1, 0 < � < 1, and de�ne

s = s1� + s2 (1� �) ,
1

p
=

�

p1
+
1� �
p2

.

Then the following estimate holds

kfkF s
p;q(E)

. kfk�F s1
p1;q1

(E) kfk
1��
F
s2
p2;q2

(E) : (3.14)

Proof of Theorem 1.3. The conclusion is obtained, when s is an integer
by using E-valued Gagliardo-Nirenberg inequalities. Assume s non integer.
Clearly, the map u ! f (u) is well de�ned and continuous from Y s;p \ Y 1;sp
into Xp, since f (0) = 0, f is Lipschitz function and the embedding Y s;p � Xp

is continuous. Thus it su¢ ces to prove that the map

u! Df (u) = f (1) (u)Du

is well de�ned and continuous from Y s;p\Y 1;sp into Y s�1;p. This fact is derived
as in [1, Theorem A].
Now, we will consider the Sobolev-Lions type space

Y m;s;p (E0; E) =Wm;s;p (RnT ;E0; E) :

Proof of Theorem 1.4. By (1:3) the maps,

u! u(j) (t0; x) ; j = 0; 1; 2; :::;m� 1

are bounded from u 2 Y m;s;p (E0; E) onto

Xj;p = (X
s;p (E0; E) ; Xp)�j ;p , �j = �j (s; p) =

jp+ 1

ps
:

Since
Xs;p (E0; E) = Xs;p (E) \Xp (E0) ;

by properties of real interpolation of Banach spaces, interpolation of the inter-
section of the spaces (see e.g. [12, §1.3]), and in view of de�nition Xs;p (E0; E),
we obtain

Xj;p = (X
s;p (E0; E) \Xp (E0) ; Xp)�j ;p = Ls(1��j);p

�
Rn; (E0; E)�j ;p ; E

�
:
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Since the embedding

Xs;p (E0; E) � Xs;p (E)

is continuous, by virtue of Theorem 1.1 and trace result (1:3) for any u 2
Y s;p (E0; E), we get that f (u (t0; :)) 2 Xs;p (E) and the estimate (1:4) holds.

4. Regularity properties of abstract di¢ sion equations

In this section, by using Theorems 1.4, we derive the existence, uniqueness,
and regularity properties of the problem (1:7). The abstract evolution equations
studied e.g. in [10, 11] and the references therein. In contrast to the mentioned
works, we will study the existence, uniqueness, and Lp-regularity properties of
the parabolic problem (1:7). Consider, �rst the corresponding linear problem

ut � a�u�A � u = g (x; t) , x, t 2 RnT , T 2 (0;1] ; (4.1)

u (0; x) = ' (x) for a.e. x 2 Rn, RnT = (0; T )� Rn;

where A = A (x) is a linear operator function de�ned in a Hilbert space E and
a is a complex number, generally.

Let Â (�) be the Fourier transformation of A (x), i.e. Â (�) = F (A (x)). We
assume that Â (�) is uniformly dissipative operator in E. Let

� = � (�) = �Â+ a j�j2 I, U (t) = U (�; t) = et�(�),

where I is an identity operator in space E:
Condition 4.1. Assume: (1) E is a Fourier space of type r 2 [1; 2]; (2)

A = A (x) is a linear operator with domain D (A) independent on x 2 Rn such
that Au 2 L1 (Rn;E) for u 2 S(Rn;D (A)) and Â (�) is a uniformly dissipative
operator that generates a strongly continuous and uniformly bounded semigroup
U (�; t) in E; (3) a 2 C such that a + � 2 �S (�) for all � 2 �S (�) and � > �

2 ;
(4) Â (�) is a di¤erentiable operator function with independent of � domain with

D
�
D�
� Â (�)

�
= D

�
Â
�
= D (A) for � = (�1; �2; :::; �n) and j�j � n.

Let
X0p = (X

s;p; Xp) 1
p ;p
, X0p (A) = (X

s;p (A) ; Xp (A)) 1
p ;p

;

1 < p <1:

By reasoning as in [10], by using Theorem A0 we show that the problem
(4:1) has a solution

u (x; t) = S (t)'+D (t) g; (4.2)

where S (t) and D = D (t) are linear operator functions de�ned by

S (t)' = F�1 [U (�; t) '̂ (�)] , Dg = F�1 ~D (�; t) g; (4.3)
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~D (�; t) g =

tZ
0

[U (�; t� �) ĝ (�; �)] d� :

By using the Proposition 1.1, and by reasoning as in [24] we have the following
results:
Theorem 4.1. Let the Condition 4.1 hold, 0 � 
 < 1� 1

p and

s >
pn

p� 1

�
2

r
+
1

p

�
(4.4)

for p 2 (1;1) and a r 2 ( 1; 2 ]. Then for ' 2 X0p

�
A1+


�
\ X1

�
A1+


�
;

g (:; t) 2 Y s;p1 (A
), t 2 [0; T ] the problem (4:1) has a unique strong solution
u(x; t) 2 C(1) ([0; T ] ;X1 (A)). Moreover, the following uniform estimate holds

kA
 � ukX1
+ kA
 � utkX1

� C0 [


A1+
 � '

E0p + 

A1+
 � '

X1

+ (4.5)

tZ
0

�
kA
g (:; �)kY s;p +



A1+
 � g (:; �)


X1

�
d� ] :

Theorem 4.2. Let the Condition 4.1 hold, 0 � 
 < 1 � 1
p and (4:4)

be satis�ed. Moreover, for ' 2 Y s;p (A), g 2 Y s;p (A), g (:; t) 2 Y s;p (A) the
following uniform estimate holds

kA
 � ukY s;p + kA
 � utkY s;p � (4.6)

C0 [ kA � 'kY s;p +

tZ
0

kA � g (:; �)kY s;p d� ] :

Consider now, nonlinear problem (1:7). For the study of the nonlinear problem
(1:7) we need the following: Let Y0 = Y s;p (A;E) \ L1 (A). Here, Y (T ) is the
space de�ned by

Y (T ) = f u 2 C1 (0; T ;Y0) ;

kukY (T ) = max
0�t�T

kA � ukY s;p + kA � ukX1
<1 g :

It is easy to see that Y (T ) is a Banach space. For ' 2 Y s;p1 (A), let M =
kA � 'kY s;p + kA � 'kX1

.
Condition 4.3. Assume:
(1) the Condition 4.1 and Assumption A0 are hold, ' 2 Y s;p (A) \ X1 (A)

and s > pn
p�1

�
2
r +

1
p

�
for p 2 (1; 1] and a r 2 ( 1; 2 ];

(2) the function u! f (x; t; u): RnT�X0;p ! E is a measurable in (x; t) 2 RnT
for u 2 X0;p. Moreover, f (x; t; u) is continuous in u 2 X0;p and f (x; t; :) 2
C [s]+1 (X0;p;E) uniformly with respect to x 2 Rn, t 2 [0; T ].
Main aim of this section is to prove the following result:
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Theorem 4.3. Let the Condition 4.3 hold. Then problem (1:7) has a unique
strong solution u 2 C(1) ([0; T0) ;Y0), where T0 is a maximal time interval
dependent of M . Moreover, if

sup
t2[0; T0)

�
kA � ukY0 + kA � utkY0

�
<1

then T0 =1:
Proof. First, we are going to prove the existence and the uniqueness of the

local strong solution of (1:7) by contraction mapping principle. By (4:5), ((4:6))
the problem of �nding a solution u of (1:7) is equivalent to �nding a �xed point
of the mapping of G (u) de�ned by

G (u) = G (u) (x; t) = S (t)'+�(u) ;

where

� (u) =

tZ
0

F�1
h
U (�; t� �) f̂ (u) (�; �)

i
d�:

Let

Q = Q (M ;T ) =
�
u : u 2 Lp (RnT ;H (A)) , kukY0 �M + 1

	
with T and M to be determined. So, we will �nd T and M so that G (u) is a
contraction on Q(M ;T ). From Lemma 3.1 we know that �(u) 2 Lp (0; T ;Y s;p1 )
for any T > 0. From Lemma 3.1 it is easy to see that the map G (u) is well
de�ned for f 2 C [s]+1 (X0p;E). By reasoning as in [11] we show that the
operator G maps Q (M ;T ) into Q (M ;T ) and G : Q (M ;T ) ! Q (M ;T ) is
strictly contractive if T is appropriately small relative to M , i.e the map G =
G (u) has a unique �xed point in Q (M ;T ). Moreover, in a similar way as in
[11], we obtain the assertion.
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