

Course Code	Course Name	Year/Semester	Theory	/ Practice	e Credits	ECTS	
IAED 4160	Virtual Presentation Techniques	2023-2024 / Spring	3	0	3	4	

Level of Course: Undergraduate

Course Type: Elective

Language of Instruction: English

Course time: Wednesday,14.00-17.00

Course classroom: BB-04

Mode of Delivery: Presentation, Assignments

Prerequisites and None

Co-requisites:

Course Coordinator:

Name of Lecturer(s): Lec. Kadir Emre BAKIR

Course Teaching Assistant:

Course Objectives:

Introduction and providing fundamental knowledge to digital presentation techniques and their

applications.

Course Description: The aim is to equip students with fundamental knowledge of virtual presentation techniques. 3D Models can be converted into other formats that let designers see, explore and present their model from human scale by using software such as Twinmotion and Enscape. The course focuses mainly on real-time rendering rather than rendering

still frames or creating animations.

Learning Outcomes:

Upon successful completion of the course, students will be able to:

- Students will be able to recognize trends of virtual presentation.
- Students will be able to use modeling tools that are complied with real-time renderers.
- Students will be able to convert their models into different formats by using real-time
- Students will be able to enhance their presentation techniques through real-time renderers.

Language: The course and discussions will be in English.

Text Books:	-
Recommended Text Books:	
For the terminology:	-
Reading Text books:	
Planned Learning Activities and Teaching Method:	Learning/Teaching Method: The expected learning outcomes for the course will be assessed through: Class hour submissions, a Midterm Exam, Final Project and Class discussions and

Assignments: Students are required to complete and submit assignments for both in class exercise and home works according to syllabus.

Class Participation: Regular attendance of all enrolled classes is expected. Do not be late to the class. Attendance will be taken through your signature within the first 15 minutes of the class; if you come later you will be considered absent. At the end of the Semester, your attendance will be reported on UBS system. Attendance is compulsory and in case of absenteeism of more than 30%, the system will automatically grade you "FX". If you miss a class, it is your responsibility to 'make up' all work, including items discussed in class. Class contribution will be measured in terms of quality not quantity. If you need to leave early for whatever reason, you should exercise politeness and notify your professor at the commencement of the session.

Academic integrity & plagiarism: Academic integrity is the pursuit of scholarly activity based on the values of: honesty, trust, fairness, respect and responsibility. Practicing academic integrity means never <u>plagiarizing</u> or cheating, never misrepresenting yourself, never falsifying information, never deceiving or compromising the work of others. Basically this means, either <u>intentionally</u> or <u>unintentionally</u>, using the words or ideas of someone else without giving credit, it's strictly forbidden.

Course Text books: There is no specific textbook for this course.

Key Works: In this course, lectures and assignments mainly focus on preparing students to the professional life and presenting 3D models by using Real-Time Renderers.

Specific Rules:

feedback.

- 1. Be punctual. Punctuality is a sign of respect toward yourself and the others.
- 2. Show respect for all the people and property around you.
- 3. Be responsible for your actions and meet all expectations.

- 4. Follow directions the first time they are given.
- 5. Students should raise their hand to signal a question or to answer a question.
- 6. Students should use the Internet at school for academic purposes only.
- 7. It is forbidden to record classes with any type of device.

Communication: Students are encouraged to visit the lecturer during his/ her office hours. If you cannot make it to announced office hours, please make individual arrangements via e-mail. However, do not expect the lecturer and the research assistant to respond at length via e-mail to questions of content, definition of terms, grading questions etc. If you have a question that requires a substantive response, please set up an appointment to speak with one of us.

Course Contents*: (Weekly Lecture Plan)

Date	Week	Chapter Topic	Take-home exercise
14.02. 2024	1	Introduction to Real-Time Rendering - What is Real-Time Renderers and -3D modelling software that are complied with Real-Time Renderers	Further Research, online tutorials
21.02. 2024	2	SketchUp + Twinmotion -Creating a basic 3D model in SketchUp -Downloading and installing Twinmotion EDU version	Further Research, online tutorials
28.02. 2024	3	Importing SketchUp model to Twinmotion - File formats for importing -General settings after importing	Further Research, online tutorials
06.03. 2024	4	Materials in Twinmotion -Material Library -Applying materials to model objects -Creating custom materials and material settings	Further Research, online tutorials
13.03. 2024	5	Lights in Twinmotion -Adding lights to imported model -Light settings	Ass 1: Will be announced during the course
20.03. 2024	6	Twinmotion Object Library -Adding objects from library	Further Research, online tutorials
27.03. 2024	7	Exporting Twinmotion scene through Presenter -Experiencing Twinmotion Presenter General Review before Midterm	Further Research, online tutorials
	8	MIDTERM EXAM WEEK	
10.04. 2024	9	National Holiday	

17.04. 2024	10	Creating Phases - Phase Creation, adding objects to phases	Further Research, online tutorials
24.04. 2024	11	Introduction to Enscape -Dowloading and Installing Enscape Educational Version -Enscape Menu in SketchUp -Enscape Live Connection for SketchUp	Further Research, online tutorials
01.05. 2024	12	National Holiday	
08.05. 2024	13	Enscape Live Connection, Materials, Lights and Assets in Enscape -Connection between Enscape and SketchUp -Assigning materials, adding lights, assets	Ass 2: Will be announced during the course Further Research, online tutorials
15.05. 2024	14	- Exporting Enscape project as .exe file General Review before Final	
			FINAL PROJECT

^{*} PLEASE NOTE: Details of the syllabus and course schedule are subject to minor changes that will be announced in class and posted on Blackboard website.

Grading: Midterm and final exam responses will be evaluated for accuracy, thoughtfulness and clarity be evaluated for content, quality of ideas and clarity of presentation (including both writing and graphics). **Pass mark is 50. If total assessment grade is lower than 50, student will be failed.**

Assessment Methods and Criteria:

METHODS	EFFECTS ON GRADING
Assignments	%20
Midterm Submission	%30
Final Project	%50
	%100

ECTS Workload Table:

ACTIVITIES	NUMBER	HOUR	WORKLOAD
Lectures	13	3	39
Assignments	2	10	20
Self-study for Midterm Submission	1	16	16
Self-study for Final Project	1	25	25
Total Workload	0	0	100
Total workload/25			100/25
ECTS			4

GRADING AND EVALUATION

The students' progress will be evaluated throughout the semester. Grade Scale:

GRADE	MARKS	VALUE
A+		
Α	95-100	4.00
A-	85-94	3.70
B+	80-84	3.30
В	75-79	3.00
B-	65-74	2.70

GRADE	MARKS	VALUE	
C+	60-64	2.40	
С	55-59	2.20	
C-	50-54	1.70	
D+	45-49	1.30	
D	40-44	1.00	
F	0-39	0.00	